
International Journal of Theoretical Physics, Vol. 37, No. 1, 1998

Quantum Computation: From the Sequential
Approach to Simulated Annealing
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This is a brief outline of some essential features of quantum computation. We
describe sequential quantum data processing and speculate on new modes of
quantum computation such as quantum annealing.

It has been known for several years that the theory of quantum comput-

ersÐ i.e., machines that rely on characteristically quantum phenomena to

perform computations (Deutsch, 1985)Ð is substantially different from the

classical theory of computation, which is essentially the theory of the universal

Turing machine. In particular, quantum computers can perform certain compu-

tational tasks, such as factorization (Shor, 1994), using quantum mechanical
algorithms (Deutsch and Jozsa, 1992; Bernstein and Vazirani, 1993) which

have no classical analogues and can be overwhelmingly more efficient than

any known classical algorithm.

The theory of quantum computation has been extensively developed

during the last few years and several review papers have covered the recent
progress in the field (Ekert and Jozsa, 1996; Lloyd, 1995). Here we provide

a brief outline of the essential features of quantum computation, but, in order

to avoid repetitions and overlaps with these reviews, we take a slightly

unorthodox approach and present the computation as a type of pattern forma-

tion and recognition process. This view allows us to stress that it may be

worthwhile going beyond a unitary sequential evolution and consider other
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modes of quantum computations such as, for example, quantum annealing

(Castagnoli and Rasetti, 1993).

Intuitively, a quantum computer is any physical quantum system whose
dynamical evolution takes it from one of a set of input states to one of a set

of output states. The states are labeled in some canonical way so that the

labels provide the input value and the result of the computation. If a quantum

computing machine is composed of a quantum register X and some auxiliary

quantum components, then quantum computation can be viewed as a process

which consists in preparing an input state r in of the register and evolving it
to an output state r out,

r out 5 o
i

Ai r inA
²
i (1)

where {Ai} is any set of linear operators which form a decomposition of unity

o
i

Ai 5 1 (2)

and defines a completely positive map r in ® r out. The output state usually

contains a pattern encoded in the matrix elements of r out which can be revealed

by an appropriate measurement performed on the register. The computation
or the pattern formation process can be performed in a number of different

ways. The most common one is based on a sequential unitary computation

with additional registers for storing intermediate results.

Evolution of register X described by equation (1) is typically presented

as a unitary evolution of X together with an auxiliary register Y. The two

registers X and Y are composed of respectively m and n qubits, i.e., two-
state quantum systems. Any binary string of length m, x P B m is represented

by a vector | x & from a 2m-dimensional Hilbert space *X associated with

register X. States corresponding to different strings are orthogonal, ^ x | x8 & 5
d xx8. Evaluation of any Boolean function f : B m ® B n is then determined by

an appropriate unitary evolution of the two registers,

| x & | 0 & ®
Uf

| x & | f(x) & (3)

where f (x) P B n. The power of quantum computation then comes from our
ability to prepare a superposition of all input values x as a single state and

by running the computation Uf only once we can compute all of the 2m values

f (0), . . ., f (2m 2 1),

1 1

2m/2 o
2m 2 1

x 5 0
| x & 2 | 0 & ®

Uf 1

2m/2 o
2m 2 1

x 5 0
| x & | f(x) & (4)
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The snag is that no quantum measurement can extract all of the 2m values

f (0), f (1), . . ., f (2m 2 1) from | f & . However, there are measurements that

provide information about joint properties of all values f (x), such as, for
example, periodicity. For if we ignore and trace over the register Y, the

evolution Uf can be written, following equation (1), as

r in 5
1

2m o
x, x8

| x & ^ x8 | ® r out 5
1

2m o
x, x8: f(x) 5 f (x8)

| x & ^ x8 | (5)

Any periodicity in f (x) will be reflected in a periodic pattern of matrix

elements of r out. As an example let us consider Simon’ s algorithm (Simon,

1994). We are given a quantum `black box’ which computes a function f :
B m ® B m which is guaranteed to be a 2-to-1 function with periodicity r:
f(x) 5 f (x8) iff x8 5 x % r for all x, x8 P B m. The problem is to find the
periodicity r.

We start with the preparation of register X in a equally weighted superpo-

sition of all values x; this can be achieved by applying transformation

T 5
1

! 2 1 1 1

1 2 1 2 (6)

to each qubit, initially in state | 0 & . The corresponding transformation on the

global state of the register is given by the so-called Hadamard transform

Hm | x & 5
1

2m/2 o
y P Bm

( 2 1)x ? y | y & (7)

Then we apply Uf , which in our case is defined by

Uf: | x & | y & ® | x & | y % f(x) & (8)

Register X alone evolves as

1

2m o
x, x8

| x & ^ x8 | ®
1

2m 1 1 o
x

| x & ^ x | 1 | x & ^ x % r | (9)

Finally we measure qubit by qubit an observable specified by eigenvectors

1/ ! 2( | 0 & 6 | 1 & ), i.e., the following global projector in *X:

Pz 5
1

2m o
x, x8

( 2 1)z ? (x 1 x8) | x & ^ x8 | (10)

where z P B m and represents the result of the measurement. The state of the

system after the measurement, corresponding to result z, is given by

Pz r outP
²
z (11)
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and has the explicit form

1

2m 1 1 [1 1 ( 2 1)z ? r ] o
y, y8

( 2 1)z ? ( y 1 y8) | y & ^ y8 | (12)

As we can see from equation (12), values z8 such that z8 ? r 5 1 never

correspond to outcomes of the measurement, while values corresponding to

z ? r 5 0 are obtained with equal probability. The periodicity r can therefore

be obtained by repeating the procedure for a sufficient number of times and

then solving the system of linear equations zi ? r 5 0, where zi are the results
of the measurements. In this way the periodicity r can be found with a number

of iterations polynomial in m, in contrast to the classical case, where the

value of f must be computed for each of the 2m input states separately and

therefore an exponential number of computations are needed.

Notice that the information about the pattern of the function contained
in the density matrix, i.e., the value of the periodicity r, has been revealed

by a suitable measurement on the X register. Such a measurement can be

also performed by first applying the Hadamard transform (7) to the register

qubits followed by a simple projector measurement | z & ^ z | in the computational

basis. Notice that the application of the Hadamard transform to a basis

projector | z & ^ z | leads to projector Pz. The last step of the algorithm can then
be viewed either as a nonunitary transformation on register X, given by the

projector measurement Pz , or as a sequence of the Hadamard transform (7)

followed by the projector measurement | z & ^ z | .
We want to point out that apart from the preparation of the initial state

of the register X, all the steps in Simon’ s algorithm, including the actual

ª computation stepº given by equation (9), can be realized as a sequence of
nonunitary gates acting on register X. The action of such gates can be thought

of as the result of the interaction of the state of the register with an external

system, ignoring what happens to the external system. The external system

must be chosen in such a way that its coherence time is larger than the

interaction time of the computational step (9). This is required in order to
preserve the quantum coherence in the register (it is the quantum coherence

which is necessary for the exponential speedup of the quantum algorithm

with respect to its classical counterpart).

We notice that the structure of Simon’ s algorithm is very similar to the

more popular Shor algorithm for factoring large integers into primes. Actually,

Shor’ s algorithm also can be viewed as a pattern recognition problem, where
the relevant information about the structure of the pattern is contained in the

period of a function defined on the group of integers modulo q, Zq , and

given by

g (x) 5 a xmodN (13)
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where q is of the order of the square of the number to be factorized N, and

a is an integer coprime with N and chosen at random. The information about

period is extracted in a similar fashion as in the Simon algorithm: the state
of register X is first prepared in an equally weighted quantum superposition

of all basis states in Zq and then interacts with a second system Y in order

to compute function g (x). In this way the characteristic pattern of g is reflected

in the density matrix r x and is revealed in the same way as in Simon’ s

algorithm, replacing the Hadamard transform (7) with the discrete Fourier

transform

FT | x & 5
1

! q o
q 2 1

y 5 0

exp(2 p iyx/q) | y & (14)

The sequential quantum computation, which we have outlined above, has

been the most popular approach in this field for some time. However, we

believe that other physical methods of performing computations (after all,
any physical process can be viewed as a kind of computation) should be also

given a serious consideration. Let us mention briefly one alternative approach

known as quantum annealing.

Classical simulated annealing (Kirkpatrick et al., 1983) deals with com-

plex optimization problems, which usually boil down to minimizing certain

`cost functions.’ There are many computational problems in which we want
to find the minimum of a function in the presence of requirements that push

toward different directions and it is difficult to establish which could be the

best compromise. Mathematically we could say that we have N Boolean

variables xi and the cost function, which can be of the type

H (x) 5 o
ijk

Jijk ? xi ? xj ? xk (15)

with a given set of the Jijk coefficients. It is a hard mathematical problem to

find the set of xi which for a given instance of the J’ s minimizes H. However,

if we can find an appropriate physical system, such as, for example, spin

glasses, so that the cost function represents the Hamiltonian of the system,
we may solve the problem with a help of statistical mechanics. We start with

a random, thermal, distribution of xi and then we cool the system, driving it

to its ground state, i.e., the global minimum of H, and then we read the

corresponding xi.

Consider, for example, a Boolean network which represents a Boolean

function f : B m ® B n with input nodes U and output nodes V and an assignment
of logical values u and v such that f (u) 5 v. Finding (u, v) for a particular value

of u can, of course, be realized by simply running a sequential computation on

the network with the input nodes set to u and subsequent reading of the

output v. Another approach is to design the network so that each combination
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(u,v) of the Boolean states of a set of nodes belonging to the network elements

(gates or wires) corresponds to some energy Eu,v. Combinations satisfying

the relation f (u) 5 v belong to a degenerate ground energy level, others stand
on a discretely higher (by some D E ) level. Consequently, the overall network

ground state corresponds to assignments of the node Boolean variables which

satisfy all gates and wires, and are thus network solutions. There may be a

number of local energy minima. Therefore the network should be put in

interaction with a heat bath so that the system gradually loses its energy and

is driven to the ground state without being trapped into these local minima.
We emphasize that the simulated annealing approach gives the possibility

of considering Boolean networks with closed-loop structures that are not

implementable in a simple way in a time-sequential model. By introducing

wires which connect the output to the input, leading to a situation where

both the input and the output are in a functional dependence on each other,

we can give the network additional complexity.
In the quantum annealing computation proposed by Castagnoli and

Rasetti (1993), combinations (x, y) with energies Ex,y become eigenstates and

eigenvalues of the gate Hamiltonian. In the ground state, the gate can dwell

in any superposition of the eigenstates (i.e., tensor products of the gate qubit

eigenstates) which satisfy it. For a suitable temperature T of the heat bath,
such that 0 , kT , , D E, the gate will relax onto ground following (asymptoti-

cally) the exponential law p 5 1 2 e 2 r t, with r . 0, where p is the probability

of finding the gate in the ground state by time t. For example, the logical

operation NOT can be implemented by driving an appropriate two-node gate

to its ground state which is in a superposition of pairs (x,y) which satisfy y
5 NOT x, i.e., in a superposition of | 01 & and | 10 & :

External constraints which determine the energy minima can be imposed

by an appropriate tuning of the intergate and network±environment interac-

tions or by some symmetry properties due to quantum statistics (Castag-

noli, 1998).

Quantum annealing requires a coupling with the environment; in this

case dissipation and decoherence may be employed to perform useful compu-
tations. Let us mention in passing that a sequential quantum computation is

only possible when one can minimize the unwelcome effects of dissipation.

As it is not clear at present which technology, if any, will support quantum

computation in the future, it seems appropriate to keep the repertoire of

potential approaches to quantum computation as broad as possible and cer-

tainly include quantum annealing.
In summary, we have briefly outlined some basic ideas behind the

theory of quantum computation, including quantum annealing as an interesting

alternative for quantum architecture. Recently both experimental and theoreti-

cal research in quantum computation is accelerating worldwide. New technol-
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ogies for realizing quantum computers are being proposed, and new types

of quantum computation with various advantages over classical computation

are continually being discovered and analyzed and we believe some of them
will bear technological fruit. From a fundamental standpoint, however, it

does not matter how useful quantum computation turns out to be, nor does

it matter whether we build the first quantum computer tomorrow, next year,

or centuries from now. The quantum theory of computation must in any case

be an integral part of the world view of anyone who seeks a fundamental

understanding of the quantum theory and the processing of information.
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